LeetCode 1. Two Sum 解題紀錄
題目
Given an array of integers nums
and an integer target
, return indices of the two numbers such that they add up to target
.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
- 2 $\leq$
nums.length
$\leq 10^4$ - $-10^9 \leq$
nums[i]
$\leq 10^9$ - $-10^9 \leq$
target
$\leq 10^9$ - Only one valid answer exists.
Follow-up: Can you come up with an algorithm that is less than $\mathcal{O}(n^2)$ time complexity?
想法
天字第一題,可以先跳過(誤)
如果是第一次寫 LeetCode,建議可以複製以下內容用 Online compiler 寫寫看,完成後再把 twoSum
funcion 的部分貼到 LeetCode 上。
#include <iostream>
#include <vector>
using namespace std;
vector<int> twoSum(vector<int>& nums, int target)
{
return {};
}
int main()
{
// input
vector<int> input = { 2, 7, 11, 15 };
// get the output
vector<int> output = twoSum(input, 9);
// print the output
cout << "output: ";
for(auto i:output)
{
cout << i << " ";
}
return 0;
}
在 hash table 內尋找想要的 9(target) -2 (目前數字) 為欲尋找的數字 7,若有找到的話,將這個數字傳回 vector 作答;若沒有找到,則將目前數字 2 加入 hash 中,供後人搜尋。
解法
解法一:暴力法
全部的數字全部找過一輪 ❌(TLE)
Time complexity: $\mathcal{O}(n^2)$.
Space complexity: $\mathcal{O}(1)$.
解法二:unordered_map
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> mp;
for(auto i=0; i<nums.size(); i++)
{
if(mp.find(target-nums[i]) != mp.end())
{
return {i, mp[target-nums[i]]};
}
else
{
mp[nums[i]] = i;
}
}
return {};
}
};
Time complexity: $\mathcal{O}(n)$.
Space complexity: $\mathcal{O}(1)$.
完整 C++ 實驗
附上可以直接在 Online compiler 跑的 code,可以先試試看在 LeetCode 介面的使用:
#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
vector<int> twoSum(vector<int>& nums, int target)
{
unordered_map<int, int> mp;
if(!nums.size())
{
return {};
}
for(auto i=0; i<nums.size(); i++)
{
if(mp.find(target - nums[i]) != mp.end())
{
return {i, mp[target - nums[i]]};
}
else
{
mp[nums[i]] = i;
}
}
return {};
}
int main()
{
vector<int> input = { 2, 7, 11, 15 };
vector<int> output = twoSum(input, 9);
// print the output
cout << "output: ";
for(auto i:output)
{
cout << i << " ";
}
return 0;
}