Contents

LeetCode 88. Merge Sorted Array 解題紀錄

題目

Problem

You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.

Merge nums1 and nums2 into a single array sorted in non-decreasing order.

The final sorted array should not be returned by the function, but instead be stored inside the array nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.

Example 1:

Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]

Explanation: The arrays we are merging are [1,2,3] and [2,5,6]. The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.

Example 2:

Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]

Explanation: The arrays we are merging are [1] and []. The result of the merge is [1].

Example 3:

Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]

Explanation: The arrays we are merging are [] and [1]. The result of the merge is [1]. Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.

Constraints:

  • nums1.length == m + n
  • nums2.length == n
  • 0 $\leq$ m, n $\leq$ 200
  • 1 $\leq$ m + n $\leq$ 200
  • $-10^9 \leq$ nums1[i], nums2[j] $\leq 10^9$

Follow up: Can you come up with an algorithm that runs in $\mathcal{O}(m+n)$ time?

想法

要把所有的值依照 sorted 塞回 nums1 裡,只要比較兩個 array 中最大值就可以知道應該要把誰放進去了。

如果 nums1 全部的值都比 nums2 大,則需要最後一個 while 將所有值放進 nums1

解法

void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {

    auto i = m-1, j = n-1, pos = m+n-1;

    while(i>=0 && j>=0)
    {
        if(nums1[i] < nums2[j])
        {
            nums1[pos--] = nums2[j--];
        }
        else
        {
            nums1[pos--] = nums1[i--];
        }
    }
    while(j>=0)
    {
        nums1[pos--] = nums2[j--];
    }
}

Time complexity: $\mathcal{O}(m+n)$.

Space complexity: $\mathcal{O}(1)$.